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perational seasonal climate prediction is an
emerging practice with far-reaching societal
applications. An ability to anticipate climate fluc-

tuations one or more seasons in advance would have
measurable benefits for decision making in hydrology,
agriculture, health, energy, and other sectors of soci-
ety. It would allow for proactive reservoir management
(Cunha 2003), crop-planting adjustments (Dilley 1997;
Hammer et al. 2001), vector control for epidemic dis-
ease prevention (Thomson et al. 2000), fuel storage,
and other mitigative measures. It also influences other

risk management activities implicit in the weather de-
rivatives and reinsurance industries (Murnane et al.
2002; Murnane 2004).

Until the most recent decades, climate prediction
had been viewed as a speculative and largely unproven
venture. In the 1980s, the U.S. National Weather
Service’s seasonal outlooks were developed using
mainly lag correlations of observed upper-atmospheric
pressure anomalies (Wagner 1989) and analogs
(Livezey and Barnston 1988), with some consideration
of newly discovered teleconnections from tropical Pa-
cific sea surface temperatures (SSTs) (Horel and Wallace
1981). More recently, and largely as a result of better
quantification of the climate effects of the El Niño–
Southern Oscillation (ENSO) phenomenon, seasonal
forecasts of 3-month-average surface temperature or
precipitation have been clearly demonstrated to have
skill in particular seasons, regions, and circumstances
(Livezey 1990; Kumar et al. 1996; Shukla et al. 2000;
Graham et al. 2000). Nonetheless, users often remain
cautious and reluctant to make use of officially issued
climate forecasts in their decision making process.
Underlying this hesitancy is the complication of accom-
modating the inherent probabilistic nature of climate
forecasts. As such, the value of the forecasts becomes
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clear only through their consistent application over a
set of cases rather than in any single case. A related
issue is the fact that it is not always clear why seasonal
predictions succeed in some instances but fail in others.

Are the failures of individual seasonal predictions
largely reflections of an inherent natural limit of sea-
sonal climate predictability? How much do inaccura-
cies and biases in seasonal prediction methodologies
contribute to errors in seasonal climate predictions? Is
there an optimal way to practice seasonal climate pre-
diction?

In this paper, we focus on some issues related to
the practice of making seasonal climate predictions.
Starting from a discussion of why climate predictabil-
ity exists, we propose what the best practice for sea-
sonal climate prediction may be. The best practice is
viewed as a procedure that would lead to the most
accurate seasonal climate predictions, resulting in the
highest possible skill when evaluated over an extended
validation period.1 We then describe an activity of the
Seasonal Diagnostics Consortium of the Applied Re-
search Centers (ARCs) aimed at realizing some aspects
of making the best possible predictions.2 Other practi-
cal applications for the consortium activity are also dis-
cussed.

CLIMATE PREDICTABILITY AND CLIMATE
PREDICTIONS. Seasonal climate predictability has
its scientific basis in the fact that slow variations in the
Earth’s boundary conditions, for example, SST, snow
cover, soil wetness, or vegetation, can influence global
atmospheric circulation and thus global surface cli-
mate.3 If future evolution in the boundary conditions
can be anticipated, then from the knowledge of their
influences on global atmospheric circulation, skillful
seasonal predictions for atmospheric climate anoma-
lies are possible. A key requirement in making success-
ful seasonal climate forecasts, therefore, is document-

ing and understanding atmospheric responses to a broad
range of anomalous boundary forcings. Because SST
forcing is principal among the boundary conditions
influencing atmospheric seasonal variability, we focus
mainly on it in this paper.

It can be shown that the most accurate prediction
of seasonal mean climate, that is, a seasonal climate
prediction that on average would have the highest skill,
is the atmospheric response associated with the attend-
ing anomalous boundary forcing. To the extent that
there is a “forcing to response” relationship between
the boundary conditions and the atmosphere, the pre-
dictable signal can be estimated from dynamical ex-
periments in which the boundary conditions are speci-
fied. Indeed, this is the presumption of the so-called
two-tiered practice of climate forecasting that has been
in wide use (Bengtsson et al. 1993). In this initial phase
of the consortium activities, the focus is on the sensi-
tivity of such atmospheric models to specified SST
boundary conditions; subsequent efforts will address
the suitability of the two-tiered design itself.

In theory, over increasingly large numbers of cases
of the same anomalous boundary forcing, the statisti-
cal distribution of the atmospheric anomalies would
converge to that which is most likely for that forcing.
In the absence of large samples of repeated observa-
tions of any specific SST anomaly pattern, this distri-
bution is estimated from large ensembles of AGCM
integrations for the same SST anomaly pattern but for
differing atmospheric initial conditions—the latter giv-
ing rise to variability in the climate simulations across
ensemble members. The summary information ob-
tained from the statistical distribution (hereafter called
the probability density function, or PDF) would then
be considered the most accurate and hence the best
forecast. For example, the mean anomaly across the
ensemble members can be considered as a possible
deterministic prediction, and the uncertainty of this

1 We apply the term accuracy to forecast quality for an individual case (e.g., a single location for one time), and the term skill for
quality over a collection of cases (either many locations for a single time, many times for a single location, or, more typically, for
many cases over both time and space).

2 The ARCs consists of three consortia, Seasonal Diagnostics being one of them. The members of the Seasonal Diagnostics Con-
sortium are the National Oceanic and Atmospheric Administration (NOAA), Climate Diagnostics Center (CDC; Boulder Colo-
rado), the National Aeronautics and Space Administration (NASA) Seasonal to Interannual Prediction Project [NSIPP, which
was renamed the Global Modeling and Assimilation Office (GMAC) in 2003, Greenbelt, Maryland], the International Research
Institute for Climate Prediction (IRI; Palisades, New York), the National Centers for Environmental Prediction (NCEP; Camp
Springs, Maryland), the Center for Ocean–Land–Atmosphere Studies (COLA; Calverton, Maryland), the National Center for At-
mospheric Research (NCAR; Boulder, Colorado), Scripps Institution of Oceanography (SIO; La Jolla, California), and the Geo-
physical Fluid Dynamics Laboratory (GFDL; Princeton, New Jersey).

3 Seasonal forecast skill can also be derived to a lesser extent from within the atmosphere, from phenomena having long lifetimes
such as the Madden–Julian oscillation (MJO; Madden and Julian 1971) or the stratospheric quasi-biennial oscillation (QBO;
Baldwin et al. 2003). Here, however, we limit our attention to external boundary conditions.
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prediction would be reflected in the spread (dispersion)
of the PDF about the mean anomaly.

Deterministic predictions of seasonal mean climate
based on the mean anomaly, however, are not always
accurate for individual cases, even for a perfect AGCM
and perfectly represented boundary conditions. This
is the case because a single observed seasonal climate
anomaly convolves the boundary-forced signal with the
noise—the atmosphere’s internal variability that is not
boundary forced and, hence, largely unpredictable on
a seasonal time scale.4 This variability consists of indi-
vidual weather events over the course of the season
whose timing, intensities, and trajectories are not pre-
dictable beyond about 2 weeks into the future. Included
in these weather events are certain longer-lived atmo-
spheric anomalies such as high-latitude blocking pat-
terns and stationary troughs. Consequently, even the
best possible seasonal predictions have notable uncer-
tainty. It is for this reason that seasonal climate predic-
tions are cast in probabilistic terms, to reliably reflect
the uncertainty related to intrinsic “weather noise.”

Our current knowledge about the relationships
between boundary conditions and climate is incom-
plete, consisting primarily of associations related to
ENSO and a few other, mainly more localized, tropical
phenomena. Essential for improving seasonal climate
predictions is obtaining a wider knowledge of associa-
tions between boundary conditions and the statistical
distribution (PDF) of the atmospheric climate states,
together with a better understanding of the predict-
ability of those boundary conditions.

Within the paradigm that the predictable part of
climate variability emerges from boundary forcing, and
acknowledging that the best possible seasonal climate
prediction is the PDF of atmospheric states consistent
with that forcing (in the forcing-to-response paradigm
mentioned above), one pathway for improving the
practice of climate predictions is to 1) obtain a best
prediction for the future boundary condition anoma-
lies, and 2) specify the true PDF corresponding to this
boundary condition prediction as the seasonal predic-
tion having maximum possible skill. Such an approach
minimizes error in the estimate of the expected atmo-
spheric state caused by the imposed forcing. Return-
ing to our example of the mean anomaly as a deter-
ministic prediction, the mean anomaly has the
maximum likelihood of occurrence (assuming the true

PDF is not highly irregular), and is therefore the best
possible prediction. It is stressed that this “best” pre-
diction may not be accurate with respect to the ob-
served result in individual cases, or even skillful on
average over many such cases, since the signal may be
disturbed by the climate noise whose amplitude is rep-
resented by the spread of the PDF.

Such a two-tiered prediction system is already in use
at many operational centers. One may argue that the
two-tiered approach is a transitory phase necessitated
by biases in the current generation of coupled ocean–
atmosphere prediction systems. With future improve-
ments in dynamical models, seasonal climate predic-
tions may eventually be done using a one-tiered
system, in which the boundary conditions and the at-
mospheric responses evolve together. Such an evolu-
tion notwithstanding, understanding seasonal atmo-
spheric climate variability, and its connection to the
earth’s slowly evolving boundary conditions, could still
rely on the two-tiered approach where boundary con-
ditions can be considered an external forcing.

TWO APPROACHES TO INFERRING ATMO-
SPHERIC RESPONSES TO BOUNDARY
FORCINGS. The atmospheric responses to the
slowly changing boundary conditions can be inferred
using either of two broad approaches.5 An empirical
approach involves analysis of historically observed
boundary conditions and the accompanying global cir-
culation and surface climate. That is, using observa-
tions, patterns of correspondence between SST anoma-
lies and the climate can be identified. This approach is
illustrated in studies such as Barnett (1981), Ward and
Folland (1991), Barnston and Smith (1996), Yang et al.
(1996), Ward (1998), Landman and Mason (1999), and
Mason and Goddard (2001), to name only a few. While
often identifying an approximately correct atmospheric
signal forced by the ENSO-related SST anomaly pat-
tern and to a lesser extent by one or two more local-
ized tropical SST patterns (Hastenrath 1995; Anderson
et al. 1999), the period of globally adequate observa-
tional analyses is not long enough to resolve differences
in the relationships between different “flavors” of
ENSO SST forcing and climate, or between presently
unrecognized non-ENSO-related SST forcings and cli-
mate. This is the case because inadequate samples of
such SST variations exist upon which stable empirically

4 Within the paradigm of deterministic prediction, signal refers to the location of the mean of the PDF (and its deviation from the
climatological mean), whereas noise is represented by the PDF’s spread. For probabilistic predictions, signal is represented as
the entire PDF itself (and its difference from the climatological PDF), and noise as the uncertainty of the prediction (i.e., the fore-
cast probabilities).

5 A review of the history of the development and current state of climate prediction science is provided in Goddard et al. (2001).
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FIG. 1. (top) Ensemble mean simulation of 200-hPa height anomaly for
DJF 2001–02 using a single AGCM forced by the observed global SST
for the 3-month period. (bottom) Observed 200-hPa height anomalies
for DJF 2001–02. Contours are drawn at 0, 60, and –60 m; dashed lines
denote negative anomalies. Orange (blue) shading denotes positive
(negative) anomalies. Shading changes occur at magnitudes of 15, 30,
45, 80, and 120 m.

derived climate models can be built (see also Nicholls
1984).

It is this latter gap in particular that can be filled by
a second, and complementary, approach to defining
the climate signals forced by boundary conditions us-
ing dynamical approaches. A multitude of AGCM
simulations forced by the historical SSTs can be pro-
duced to yield a large sample of climate states for each
and every boundary state in the record. Permitted
thereby is a statistically robust estimate of the climate
sensitivity to the various, known SST conditions. In
addition to detecting the mean climate signal due to
the influence of the boundary condition, the unpre-
dictable portion of the atmosphere’s behavior for that
forcing is also estimated by running the AGCM repeat-

edly using the same boundary condi-
tions but differing atmospheric initial
conditions, thereby yielding the PDF of
climate states consistent with the forc-
ing. For the typical 15-day lead times
of seasonal climate predictions, details
of the initial atmospheric conditions are
not important because the forecast is,
on average, beyond the range of deter-
ministic predictability. The result is an
ensemble of simulations whose mean
is representative of the signal coming
from the boundary conditions and
whose variations (which are often sub-
stantial) express the uncertainty related
to the different possible sets of unpre-
dictable weather events. The larger the
ensemble of AGCM runs, the smaller
the role of sampling error and the more
representative the resulting PDF is ex-
pected to be, aside from biases of the
AGCM. Relationships among bound-
ary condition signal strength, AGCM
ensemble size, and atmospheric climate
simulation skill are discussed in Rowell
(1998), Kumar et al. (2001a), Kumar
and Hoerling (2000), and Wehner
(2000), among others.

The AGCM simulations are com-
puter intensive, which partly explains
why the dynamical approach emerged
most rapidly during the most recent
decade. Yet, this approach to determin-
ing SST–atmosphere relationships
makes possible simulations of atmo-
spheric responses to boundary forcings
that have hitherto been unsampled in
the instrumental record—an attribute

that is particularly germane within a nonstationary
climate.

It remains an open question to what extent dynami-
cal methods may improve upon the information
gleaned from empirical methods alone for purposes
of climate attribution and prediction. The answer de-
pends largely on the sensitivity of the atmosphere to
changes in boundary forcings. If there is mainly just a
single preferred atmospheric pattern, the one that is
forced by ENSO-related tropical SSTs, then empirical
approaches have adequate historical archives upon
which to define that mode of variability. The question
is whether inter-ENSO variations of tropical SST
anomalies matter to the atmosphere and, further-
more, whether there exist significant response patterns
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to non-ENSO sources of SST variations—including
ones that might be unprecedented in the observed
archive. Notwithstanding debates on the merits of em-
pirical versus dynamical methods in inferring atmo-
spheric responses to boundary forcings, there is little
doubt that a synergistic use of both empirical and dy-
namical approaches would be useful in the advance-
ment of our understanding of seasonal climate
variability.

The complexity of the atmospheric processes and
of the sequence of physical events leading from SST
forcings to atmospheric responses makes individual
AGCMs prone to specific biases and raises well-
justified questions about any conclusions based on in-
dividual AGCMs. This situation leads to potential
problems in determining the true atmospheric signal
associated with a boundary forcing based on any single
model. The observations pose a no less difficult prob-
lem, namely whether a single realization of nature can
be relied upon to accurately reflect that signal.

Keeping the influence of AGCM biases in mind, the
modeling challenge is illustrated in a comparison of the
observed and a single-model ensemble mean simu-
lated 200-hPa-height anomalies during December–
February (DJF) 2001–02 (Fig. 1). We focus on the
AGCM’s mean anomaly because it represents the most
basic characteristic—the first moment—of the PDF
across the AGCM’s ensemble members. What can be

inferred from the agreement between observations and
simulations for this single case, and what is the impli-
cation for attribution efforts to discern the role of SST
boundary forcing?

Comparison with the observed height anomalies
(Fig. 1, bottom) reveals a roughly out-of-phase rela-
tionship over North America. Does this imply a poor
performance by the AGCM that could be due to biases?
On the contrary, from this comparison one cannot
reach any definitive conclusion, as the observed
anomaly may have been influenced by atmospheric
internal variability, while still being consistent with the
PDF of seasonal mean atmospheric states associated
with the SST forcing. Consistency means that the ob-
served result is within the range of possibilities implied
by the PDF, including occasionally residing on a tail of
the PDF.

The same uncertainty would exist if the AGCM
ensemble mean had closely resembled the observa-
tions for a single case, given that internal atmospheric
variability cannot only mask the boundary-forced sig-
nal, but also constructively interfere with that signal. It
is by comparing a large sample of cases of observed
and simulated climate anomaly patterns for a given
region and season that the suitability of a particular
model can be assessed (Kumar et al. 1996). On the
other hand, a principal purpose of the Seasonal Diag-
nostics Consortium is to detect the boundary-forced

Model

Model type

Horizontal resolution

Vertical resolution

Highest level (mb)

No. of simulations

References Hack et al.
(1998);

Hurrell et al.
(1998);

Kiehl et al.
(1998);

Bacmeister et al.
(2000)

T40

L18

2.9

20

CCM3

Spectral

T42

L18

2.0

18

NCEP/SFM

Spectral

2°

L34

2.5

9

NSIPP

Grid point

T40

L18

10.0

24

ECHAM4.5

Spectral

Kanamitsu et al.
(2002)

Pegion et al.
(2000);

Schubert et al.
(2002)

Roeckner et al.
(1996)

Anderson et al.
(1999)

TABLE 1. Some basic characteristics of the AGCMs used in the discussion. Model type refers to whether
quantities are stored and expressed on the basis of spectral wavenumbers or by fixed gridpoint locations.
Resolution refers to the spatial scale of the smallest details able to be captured by the model. For spectral
models, T stands for “triangular” truncation, and the following number refers to the fineness of the
horizontal resolution (T42, e.g., implies 2.81° lat and lon resolution). For gridpoint models, resolution
indicates how far adjacent grid points are apart from one another. Here, L refers to vertical resolution—
specifically, the number of vertical levels in the model. The number of simulations refers to the ensemble
size.

2° lat, 2.5° lon

L18

3.0

10

GFDL

Grid point
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atmospheric signals on an individual case basis, as for
example DJF 2001–02. A step toward significantly re-
ducing the uncertainty surrounding AGCM behavior
for individual cases is proposed in the next section.

THE SEASONAL DIAGNOSTICS CONSOR-
TIUM. No single institute has the resources to per-
form real-time climate simulations using numerous,
different AGCMs—a key diagnostic tool of the con-
sortium. The premise of this tool is that detection of
the boundary-forced signal on an individual case basis
is feasible with a multi-AGCM approach, as this would
reduce the effect of AGCM-specific biases. The im-
provement in dynamical forecast skill when using
multimodel (Rajagopalan et al. 2002; Robertson et al.
2004) and “superensemble” (Krishnamurti et al. 1999)
approaches suggests that different models have dif-
fering biases regarding their SST-forced sensitivity.
Nonetheless, despite the fact that several AGCMs used
in the consortium were developed independently at
different institutions, they have some common biases
in their mean climates, and these may lead to com-
mon biases in their sensitivities. However, a dynami-
cal approach using several AGCMs is necessary for ad-
vance detection of boundary-forced seasonal climate
signals and meaningful attribution for the origin of
observed seasonal anomalies. The degree of agree-
ment in the atmospheric responses among AGCMs
serves as a first-order indicator of the prominence of
the boundary-forced signal, as compared with the in-
ternally generated atmospheric variability.

Presently, the consortium ensures that several
AGCMs are run in near–real time using the most re-

cently observed global SSTs and sea ice (Smith and
Reynolds 2003) as prescribed boundary states. This suite
of AGCM runs is continually updated monthly, and
appended to a historical archive of such simulations
spanning, for most models, the post-1950 era. The
boundary states of soil moisture and snow cover are
not specified according to observations, though these
are fully interactive in the AGCMs. Trace gases, includ-
ing ozone, methane, and carbon dioxide, are set to
modern climatological values. The activity produces
simulations designed in the same way as those already
archived from the Atmospheric Model Inter-
comparison Project (AMIP) experiments (Gates et al.
1999). Unlike AMIP, however, the consortium pro-
duces and examines simulations as soon as is physi-
cally possible and compares them with corresponding
results using SSTs predicted 3.5 months earlier. In some
cases the simulations reflect an ongoing climate state
that may affect a seasonal forecast presently being
made. Some of the AGCMs used in the consortium
are used routinely at the operational forecast centers
(e.g., NOAA/CPC and IRI), whose recent errors and
long-term biases are important to forecasters in con-
solidating the indications of the AGCM and other tools.

The institutions participating in this ARCs consor-
tium determine the set of AGCMs used in the consor-
tium activity. However, at present not all institutions
provide their model simulations, due to practical con-
siderations. Some basic features of the participating
AGCMs are given in Table 1.

To illustrate the diagnostic activity of the consor-
tium, we consider surface temperature over North
America during the recent El Niño of DJF 2002–03. The

moderate intensity of that event (Fig. 2)
led to expectations for a canonical
winter climate resembling the previ-
ously documented teleconnection
pattern during El Niños (Opsteegh
and Van den Dool 1980; Hoskins and
Karoly 1981; Horel and Wallace 1981;
Halpert and Ropelewski 1992;
Barnston 1994; Graham et al. 1994;
Graham and Barnett 1995; Hoerling
et al. 1997; Higgins et al. 2000).

Figure 3 shows the global 2-m
temperature simulations of five
AGCMs as forced by their observed
global SST and sea ice analyses for DJF
2002–03. As an assessment of the
boundary-forced signal for this case,
we diagnose the occurrences of unani-
mous sign agreement among the en-
semble mean anomalies of all five

FIG. 2. Observed 3-month mean SST anomaly for DJF 2002–03, using
Smith and Reynolds (2003) extended reconstructed data. Red shading
denotes positive anomalies, blue shading negative anomalies. Contours
are drawn for anomaly magnitudes of 1° and 2°C. Shading changes oc-
cur at magnitudes of 0.25°, 0.5°, 1.0°, 1.5°, and 2°C.
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AGCM simulations. Within
the regions of agreement
(Fig. 4) there is fairly high
confidence of having de-
tected the sign of the bound-
ary-forced signal, whereas
outside of that region the
confidence of detection is
judged to be inadequate.
Over North America, all five
AGCMs simulated above-
normal 2-m temperature in
the western United States
and southwestern Canada,
and below-normal tem-
perature along the U.S. east
coast from the Gulf of
Mexico northeastward to
southeastern Canada (Fig. 4).
There is also unanimous
agreement that the specified
SSTs yielded positive tem-
perature anomalies over
nearly all tropical land-
masses.

In the analysis above, the
mean of the ensemble simu-
lations is interpreted as pro-
viding the most likely
boundary-forced climate
signal for each AGCM. Such
analysis focuses only on the
polarity of the signal, with
no regard to amplitude, and
unanimity of sign across all
AGCMs is required to claim
detection of the atmo-
spheric signal.6 The prob-
ability that five AGCMs having independently designed
dynamical cores and parameterization schemes will
produce the same atmospheric anomaly sign in the ab-
sence of any signal is only 2/25, or 0.06. (This is the same
binomial probability as that of flipping a fair coin five
times and getting the same outcome each time: 2–5 for
all heads, plus 2–5 for all tails.) The actual probability is

higher than 0.06 to the extent that model biases are
shared across the models. Nevertheless, agreement
among a set of models, each contributing as large an
ensemble of runs as possible to its ensemble mean, is
one viable approach to the detection of the boundary-
forced signal on an individual case basis.

The consortium’s approach to inferring atmo-
spheric signals for SST forcings circumvents the prob-
lems of inferring similar relationships using a single
AGCM. Agreement in the atmospheric responses
among different AGCMs forced with common SSTs
enhances our confidence in the “fidelity” of atmospheric
responses, even if such responses, for unprecedented
SST forcings, cannot be verified from the limited ob-
servational data. On the other hand, a first-order “sanity

6 Ideally, the multimodel signal would be defined prob-
abilistically by the number of ensemble members falling into
specified ranges. In the absence of refined model recal-
ibrations and the large ensemble sizes needed to make such
probability assignments meaningful, here we consider only the
ensemble mean (which has a lower ensemble size require-
ment) and cases of unanimous sign agreement, as a first step.

FIG. 3. Plots of a 2-m air temperature anomaly as simulated by five AGCMs for
DJF 2002–03, all forced by prescribed observed SSTs for those 3 months. Red
shading denotes positive anomalies; blue shading negative anomalies. Contours
are drawn for anomaly magnitudes of 1° and 2°C. Shading changes occur at mag-
nitudes of 0.25°, 0.5°, 1.0°, 1.5°, and 2°C.
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check” on the AGCM-simulated atmospheric response
to the ENSO SSTs can always be made by comparing it
with the observed ENSO composites that are fairly well
defined and understood.

BROADER APPLICATIONS OF SEASONAL
DIAGNOSTICS CONSORTIUM ACTIVITY.
The central goal of the consortium activity is to in-
crease our knowledge of the atmospheric impacts of
SST boundary conditions, including relatively subtle
impacts that at present cannot be gleaned from the ob-
served data alone. In recent decades enormous focus
has been placed on understanding the effects from the
tropical Pacific ENSO canonical mode boundary
forcings (e.g., see a review by Trenberth et al. 1998).
However, forcing related to variations in an ENSO’s
“flavor,” from the Indian Ocean in the absence of an
ENSO signal, from the tropical Atlantic, or from the
western Pacific warm pool, is less well understood.
These effects need better documentation not only
through isolated ocean-forcing experiments (e.g.,
Goddard and Graham 1999; Barsugli and Sardeshmukh
2002), but also for actual SST forcings for all tropical
oceans—a focus of the consortium activity.

Apart from the straightforward task of document-
ing atmospheric responses to a wide range of SST
forcings, the consortium activity and its datasets also
have other applications as discussed below.

Climate attribution. Current research on seasonal cli-
mate variability can be viewed as having two distinct
aspects: monitoring and prediction. Monitoring involves
documenting global seasonal observed climate anoma-
lies, without necessarily seeking to understand their

causes. Seasonal prediction involves
evaluation of the robustness of the
skill of the predictions, but often with-
out seeking reasons for why predic-
tions are accurate in some cases and
inaccurate in others. The consortium
can contribute to both aspects by ex-
amining the causes of observed sea-
sonal climate anomalies.

The consortium work to better
understand atmospheric signals
consistent with global SST forcings
could be done independently of the
observed atmospheric anomalies.
However, if the atmospheric signals
inferred from the AGCM simulations
are also compared with the observed
atmospheric anomalies, the causality
of observed seasonal climate can be

included in the exercise. Hence, the same set of AGCM
runs can be used to explore attribution (identification
of causality) and predictability (robustness of relation-
ship between external forcing and climate) for the ob-
served anomalies.

As an example, in the top panel of Fig. 5, we show
the observed 2-m temperature anomalies for DJF
2002–03. A comparison between the observed anoma-
lies and the model simulations (Fig. 3) indicates that
there is good agreement between the two over North
America—in particular, the negative temperature
anomalies along the immediate east coast of the
United States and positive anomalies in portions of
western North America. The mutual agreement in the
atmospheric signal among five AGCMs and the ob-
servations gives some confidence that the observed
anomalies are related to the global SSTs.

Shown in the bottom panel of Fig. 5 is an agree-
ment plot similar to that of Fig. 4, but also incorporat-
ing the observations with the model-simulated signals.
Here it is seen that a few regions of agreement among
the AGCMs are lost when the observations are in-
cluded, as for example a portion of northeastern In-
dia and northeastern China. However, where the
modeled atmospheric signal agrees with the observed
anomalies, the signs of observed anomalies are found
to be consistent with all of the AGCM responses, and
one may be tempted to attribute the observation to
the SST-forced signal. However, the question remains
open as to whether the latter agreement could be co-
incidental.

In seeking an attribution for the observed anoma-
lies, it becomes important to examine their location
within the PDF formed by all simulated anomalies as-

FIG. 4. Agreement plot for the observed SST-forced simulations of five
AGCMs for 2-m air temperature over land for DJF 2002–03. Grid points
where all five AGCMs simulated a positive (negative) temperature
anomaly are shown in yellow (blue).
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sociated with the boundary forcing,
rather than just the PDF’s mean
value. It is necessary therefore to ex-
press the attribution of individual ob-
served seasonal mean anomalies in
probabilistic terms. Similar to the
agreement plot in Fig. 4, maps show-
ing the spatial distribution of prob-
ability for AGCM-simulated anoma-
lies to be above or below given
thresholds can be analyzed. This prob-
ability would be approximated as the
number of ensemble members in the
given interval divided by the total
number of ensembles. It is empha-
sized that a probabilistic evaluation
using the full PDF of simulations re-
quires a large (order ~100) ensemble
size (Sardeshmukh et al. 2000), and
correction of systematic errors on an
AGCM-specific basis is desirable. The
consortium currently has an ensemble
of approximately 80 simulations for
each season.

Postmortem of routine operational
climate predictions. When coordinated
across many models and executed in
real time, AGCM simulations can im-
prove the forecast process by clarify-
ing the possible causes for the success
or failure of operational seasonal cli-
mate predictions.

Consider a forecast for the North-
ern Hemisphere winter (DJF), made
at a 0.5-month lead time. Observa-
tions for October would become
available during the first 10 days of
November, enabling SST predictions
for the coming several months. Using
these SST predictions for DJF, dynamical (or empiri-
cal) predictions of the atmosphere for this season
would be made in mid-November. In early March,
observations of both the SST and the climate for DJF
would become available. The consortium ensembles
of AGCM simulations are then run using the observed
SSTs. Thus, three sets of climate data are present for
the finished season: 1) atmospheric predictions by
AGCMs using predicted SSTs, 2) simulations by
AGCMs using observed SSTs, and 3) observations.

Three possible reasons for a particular forecast’s in-
accuracy may be identified:

• The SST predictions have errors that can lead to
errors in the subsequent atmospheric forecasts.

• The prediction models have errors in their atmo-
spheric responses, such that even when the SSTs are
predicted correctly, their seasonal predictions have
errors. In the case of AGCMs, these would be due
to model biases and may also include the possibil-
ity that the two-tiered design itself is flawed as a pre-
diction practice. In the case of empirical models,
these would be due to sampling limitations of the
observed data used to train the model, as well as a
lack of satisfaction of the empirical models’ assump-
tions (e.g., linearity, normality).

FIG. 5. (top) Observed 2-m temperature anomaly for DJF 2002–03 us-
ing NOAA CAMS gridded monthly data over land. Extended recon-
structed SST observations (Smith and Reynolds 2003) shown over
oceans. Contours are drawn at 0, 60, and –60 m; dashed lines denote
negative anomalies. Orange (blue) shading denotes positive (negative)
anomalies. Contours are drawn at each 1°C. Shading changes occur at
magnitudes of 0.25°, 0.5°, 1°, 1.5°, and 2°C. (bottom) Six-way agree-
ment plot, including the observations as well as the simulations of five
AGCMs whose agreement over land was shown in Fig. 4.
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• The observed climate anomalies may have little or
no signal associated with the SSTs (or other bound-
ary forcings), despite well-predicted SSTs and
AGCMs having realistic atmospheric responses to
the SSTs. This would imply a large random, unpre-
dictable component in the observed seasonal mean
climate state and would indicate a large uncertainty
in forecasts.

It would not be possible to identify which factors among
the three listed above were responsible for the accuracy
of predictions if only the predictions and verifications
were available; it is important also to generate the simu-
lations based on the true, observed boundary forcings.
It is also important to provide such assessments in a
timely manner so that the next seasonal forecast cycle
can benefit from the thorough evaluation, not only of
the causes for prior forecast success or failure, but also
the role that the most recent ocean states have played in
controlling the trajectory of seasonal climate.7

In the approach used in the Seasonal Diagnostics
Consortium, the first reason listed above is examined
by forcing the AGCMs with observed SSTs to assess
the contribution to the error caused by the imperfectly
predicted SSTs (e.g., see Goddard and Mason 2002).
(It should be noted that empirical methods can also be
used in this attribution effort, though with the various
caveats regarding the limitations of that approach in
cases of weak, or historically unsampled, forcings.) If
that reason can be eliminated, we then find where there
is anomaly-sign unanimity among the climate simula-
tions of the AGCMs. Where there is unanimity, the
second reason is substantially reduced because infer-
ences about the atmospheric signals are made using
several AGCMs, effectively filtering many of the indi-
vidual model biases. By eliminating these two factors,
it is possible to diagnose some poor predictions as being
likely due to the observations containing a large influ-
ence from internal variability. Drawing this conclusion
requires believing that the probability that the AGCMs
suffer from common biases is minimal—that is, that
their biases are largely independent. The less realistic
this belief, the larger the required number of individual
AGCMs to attain any given probability that unanimous
sign agreement occurs by chance.

Improving climate predictions. Recent evidence suggests
that consolidated output from several of today’s most

recently developed AGCMs forced by observed SSTs
provides valuable simulation guidance that may not be
possible using empirical methods. Three examples of
this are 1) prolonged high temperatures over North
America following the 1997–98 El Niño (Kumar et al.
2001b), 2) midlatitude drought in association with posi-
tive SST anomalies in the western Pacific in 1998–2002
(Hoerling and Kumar 2003), and 3) the influence of
Indian Ocean SST anomalies over the Pacific–North
American sector during the 1997–98 El Niño (Farrara
et al. 2000), although here only a single AGCM was
used. Identifying the sources of these climate effects
using empirical methods would be more difficult due
to a combination of two factors: First, historical data
needed to train empirical models are scant over parts
of the affected regions—for example, southwestern
Asia. Second, two of these occurrences (post-1997–98
El Niño warmth and 3-yr southwestern Asia drought)
are unprecedented in the most recent several decades
of historical data.

The above examples suggest that a routine climate
attribution effort using AGCMs will build up our knowl-
edge base of relationships between SST forcings and
their atmospheric responses and complement efforts
based on empirical analysis alone. By doing so, it may
lead to improvements in the seasonal predictions at
later times when SST anomalies similar to those docu-
mented are forecast to recur.

Nowcasting climate change and implications for seasonal
predictions. A prediction tool used as input to climate
forecasts for the United States at NOAA/CPC, called
optimum climate normals (OCN; Huang et al. 1996),
computes the average atmospheric anomaly over the
most recent 10 yr for surface temperature (and 15 yr
for precipitation) for the season in question, with the
anomaly defined in terms of the current 30-yr clima-
tological base period. This anomaly is specified as a pre-
diction for the subsequent season, and can be broadly
interpreted as a forward extrapolation of recent climate
trends. It is noteworthy that the historical skill of
hindcasts of OCN is similar to that of any of NOAA’s
other prediction tools, including their statistical and dy-
namical models that focus on the effects of forcings
having shorter interannual time scales. However, it is
not clear what proportion of the skill of OCN is an
artifact of statistical sampling (Wunsch 1999) as op-
posed to being physically based, for example, as influ-
enced by gradual changes in SSTs.

Recent studies have shown that some climate
anomalies may be related to decadal variability or
trends in SST anomaly. A warmer Indian Ocean (Lau
and Weng 1999; Giannini et al. 2003), an expanded

7 However, extrapolation of aspects of the most recent season’s
outcome to a forecast for the coming season requires a careful
consideration of the seasonal dependence of the SST-forced
climate signal.
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warm pool in the tropical Pacific (Barlow et al. 2002),
and other warmed portions of the world’s oceans are
likely causes for certain recent climate trends (Hoerling
et al. 2001). The recent multiyear drought in parts of
southwestern Asia and North America discussed in
Hoerling and Kumar (2003), related to a positive SST
anomaly pattern in the western tropical Pacific more
commonly observed in recent years, implies a greater
likelihood for future drought in these regions than the
observed relative frequency in the past. Longer-term
climate change may be related to interdecadal varia-
tions in the boundary conditions, or may involve
changes in anthropogenic forcings such as greenhouse
gas concentrations (Timmerman et al. 1999; Houghton
et al. 2001), or both. In any case, a coordinated set of
AGCM simulations can provide a “nowcast” of an at-
mospheric response to low-frequency SST variations.

Evaluation of model updates for seasonal predictions. An
aspect of seasonal prediction of key importance is the
signal-to-noise (S/N) ratio, which represents the rela-
tive proportion of the climate variability that is poten-
tially predictable for a given location and time of year,
given perfect knowledge of the external forcings. The
predictable portion (the signal) is dependent on SST
or other boundary conditions, external to the atmo-
sphere. The remainder of the climate variability is re-
lated to fluctuations internal to the atmosphere (the
noise), which are generally unpredictable beyond the
first 2 weeks except in those cases in which the internal
variability may depend to some extent on the signal
(Renwick and Wallace 1996; Sardeshmukh et al. 2000;
Compo et al. 2001; Schubert et al. 2001)8 or to some
degree from long-lived intra-atmospheric phenomena
(e.g., MJO, stratospheric QBO). In locations and sea-
sons having a negligible contribution from boundary
condition forcing, predictability is lacking and climate
variations are related mainly to noise. As dynamical
models are continually updated, assessments of their
seasonal predictability are an important aspect of their
evaluation. The consortium’s reliance on the output
of AGCMs makes possible evaluations of individual
AGCMs—whether for S/N, base period correlations
with observations, deviation from the majority re-
sponse of the AGCM set, or other attributes.

CONCLUSIONS: FUTURE VISION. We believe
that climate prediction in the future will have greater
input from dynamical methods either based on a one-
or two-tiered approach. One can also envision inter-
mediate (“1.5 tier”) approaches in which SSTs are speci-
fied over a portion of the oceans, such as the ENSO
domain, but a coupled (one-tiered) model is employed
over the remainder of the world oceans. Reliance on
dynamical approaches, however, requires confirma-
tion of skill and probabilistic reliability similar to or
greater than that of empirical approaches—either in
general or under specific conditions that are identifi-
able at the time of the prediction. We hope that the
Seasonal Diagnostics Consortium activities will lead to
greater acceptance in the use of dynamical methods to
better understand and predict climate variations on
seasonal-to-decadal time scales.

In the first stage of the consortium activity, the co-
ordinated set of AGCM simulations only includes the
forcing of AGCMs using global observed SST. In the
future, the consortium plans to perform “targeted”
experiments that would include a set of simulations
forced by SST anomalies restricted to single ocean ba-
sins. The results may enhance the attribution aspect of
the consortium activity, and help increase our under-
standing of the relative importance of SST, and its pre-
diction, in different ocean basins. More detailed analy-
ses of the typical limitations imposed by using predicted
SST in real-time forecasts would naturally follow.
Finally, the set of AGCM simulations can be extended
to include evolution of anthropogenic forcings to help
climate nowcasting efforts, thereby further improving
seasonal climate predictions.
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